
Applying Practical Formal Methods to the

Speci�cation and Analysis of Security Properties

Constance Heitmeyer

Naval Research Laboratory (Code 5546)
Washington, DC 20375 USA
heitmeyer@itd.nrl.navy.mil

http://chacs.nrl.navy.mil/SCR

Abstract. The SCR (Software Cost Reduction) toolset contains tools
for specifying, debugging, and verifying system and software require-
ments. The utility of the SCR tools in detecting speci�cation errors,
many involving safety properties, has been demonstrated recently in
projects involving practical systems, such as the International Space Sta-
tion, a ight guidance system, and a U.S. weapons system. This paper
briey describes our experience in applying the tools in the development
of two secure systems: a communications device and a biometrics stan-
dard for user authentication.

1 Introduction

In 1978, the requirements document for the ight program of the A-7 aircraft
[13, 14] introduced a special tabular notation for writing speci�cations. Part of
the SCR (Software Cost Reduction) requirements method, this notation was de-
signed to document the requirements of real-time, embedded systems concisely
and unambiguously. During the 1980s and 1990s, SCR tables were used by several
organizations in industry and government, e.g., Grumman [19], Bell Laborato-
ries [15], Ontario Hydro [21], the Naval Research Laboratory [7], and Lockheed
[5], to document the requirements of many practical systems, including a subma-
rine communications system [7], the shutdown system for the Darlington nuclear
power plant [21], and the ight program for Lockheed's C-130J aircraft [5].

While human e�ort is critical to creating requirements speci�cations and hu-
man inspection can detect many speci�cation errors, e�ective and widespread
development of precise, unambiguous speci�cations in industry requires power-
ful, robust tool support. Not only can software tools �nd speci�cation errors
that inspections miss, they can do so much more cheaply. To explore what form
tools supporting the formal speci�cation of requirements should take, we have
developed a suite of software tools for constructing and analyzing requirements
speci�cations in the SCR tabular notation [8]. The tools include a speci�ca-

tion editor for creating the speci�cation [9], a simulator for validating that the
speci�cation satis�es the customer's intent [8], a dependency graph browser for
understanding the relationship between di�erent parts of the speci�cation [10],

green
Text Box
NRL Release Number 01-1221.1-0471



and a consistency checker [11] to analyze the speci�cation for properties such as
syntax and type correctness, determinism, case coverage, and lack of circularity.
The toolset also contains the model checker Spin [16], a veri�er TAME [1], a
property checker based on decision procedures called Salsa [2], and an invariant

generator [17], all of which may be useful in analyzing speci�cations for critical
application properties, such as safety and security properties.

The utility of the SCR tools has also been demonstrated in several projects
involving real-world systems. In one project, NASA researchers used the SCR
consistency checker to detect several missing assumptions and instances of ambi-
guity in the requirements speci�cation of the International Space Station [4]. In
a second project, engineers at Rockwell Aviation used the SCR tools to detect 28
errors, many of them serious, in the requirements speci�cation of a ight guidance
system [20]. In a third project, our group at NRL used the SCR tools to expose
several errors, including a safety violation, in a moderately large contractor-
produced speci�cation of a U.S. weapons system [12]. Recently, we have begun
using the SCR method and tools to analyze speci�cations for security properties.
This paper briey describes our experiences in applying the SCR tools to two
secure systems: a communications device called CD and a biometrics standard.

2 Applying the SCR Tools to Secure Systems

2.1 Applying SCR to a Communications Device

COMSEC (Communications Security) devices, devices which manage encrypted
communications, are vital to the correct operation of U.S. military systems. CD
is a COMSEC device that is designed to provide cryptographic processing for a
U.S. Navy radio receiver. In addition to generating keystreams compatible with
another cryptographic device and supporting multiple channels and multiple
cryptographic algorithms, CD downloads associated algorithms and keys into
working storage, assigns them to designated communication channels, maintains
the association between an algorithm and its keys, and clears algorithms and keys
from memory. CD, based on a technology for implementing COMSEC devices
in software as well as hardware, presents a new challenge in the development
of COMSEC devices. While a solid base of experience exists for implementing
trustworthy COMSEC devices in hardware, implementing COMSEC devices in
software is rare.

To provide a high degree of assurance in the correctness of CD's speci�ca-
tion, we applied the SCR tools [18]. Our results suggest that applying SCR in the
development of COMSEC devices of moderate size and complexity is practical,
e�ective, and low-cost. In approximately one person-month, we were able to rep-
resent a signi�cant subset of a prose requirements document for CD in the SCR
notation and to establish that the SCR speci�cation satis�es a set of security
properties. The SCR speci�cation of CD is moderately complex, consisting of 39
variables (17 input variables, three auxiliary variables, and 19 output variables).
Figure 1 provides a natural language formulation and a formal representation of
each of the seven security properties that we veri�ed with the SCR tools. Because



the SCR requirements speci�cation of CD has been validated using simulation
and veri�ed to satisfy seven critical security properties, the SCR requirements
speci�cation of CD can help guide both the development of the source code for
CD and the development of test cases for evaluating the conformance of the
source code with CD's requirements.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
No. Description Propertyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 If CD is tampered with, then @T(mTamper)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2 When the zeroize switch is activated, @T(mZeroizeSwitch = on)

key 1 in keybank 1 is zeroized ⇒ cKeyBank1Key1′ = 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3 No key can be stored in location 1 cKeyBank1Key1 =/ 0

of keybank 1 before an algorithm ⇒ cAlgStoreSegment1 =/ 0
has been loaded into the first location
of algorithm storage segment 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

4 If backup power has an undervoltage @T(mBackupPower = undervoltage)
when primary power is unavailable, WHEN mPrimaryPower = unavailable
the CD enters either Alarm mode or ⇒ smOperation′ = sAlarm
Off mode OR smOperation′ = sOffiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

5 If backup power is overvoltage mBackupPower = overvoltage
then the CD is in Initialization, ⇒ smOperation = sInitialization
Standby, Alarm, or Off mode OR smOperation = sStandby

OR smOperation = sAlarm
OR smOperation = sOffiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

6 If primary power has an overvoltage @T(mPrimaryPower) = overvoltage
then either the CD is in Initialization, ⇒ smOperation = sStandby
Standby, Alarm, or Off mode, or the CD OR smOperation = sAlarm
enters Initialization mode OR smOperation = sOff

OR smOperation′ = sInitializationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7 If primary power has an undervoltage @T(mPrimaryPower) = undervoltage

then either the CD is in Initialization, ⇒ smOperation = sStandby
Standby, Alarm, or Off mode, or the CD OR smOperation = sAlarm
enters Initialization mode OR smOperation = sOff

OR smOperation′ = sInitializationiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Fig. 1. Sample properties of CD.

2.2 Applying SCR to a Biometrics Standard

Positive identi�cation and authentication of personnel is a critical issue for many
systems. For example, U.S. government personnel must often interact with the
commercial sector in situations where reliable personnel identi�cation is critical
for limiting access to sensitive information systems. While biometrics technology
addresses the critical issue of personnel identi�cation and authentication, prior to
deployment, a biometrics product must be certi�ed to satisfy published assurance
standards. However, the labor-intensive process of evaluating and validating a
biometrics product is very expensive and time consuming. One way to reduce
these problems is to use automated methods to support product evaluations.
Applying such methods should not only lead to a less costly and shorter process
for evaluating biometrics and other security products but should also produce a
more e�ective process.



To assess the utility of the SCR method and tools for evaluating a biomet-
rics product for correctness, we applied SCR to the BioAPI speci�cation [3], a
standard which de�nes the interface between an authentication device that uses
biometrics data and an application program. The goal of the biometrics API
(application program interface) is to enable rapid development of biometrics ap-
plications, the exible deployment of many biometrics devices across platforms
and operating systems, and an improved ability to exploit price and performance
advances in biometrics. From the BioAPI standard, we produced an SCR tab-
ular speci�cation, which captures the behavior of six major operations in the
standard. The SCR speci�cation consists of 20 variables: 10 input variables, one
mode class variable, and nine output variables. In about two weeks, we were able
to create the speci�cation, to demonstrate with the consistency checker that the
speci�cation contained no missing cases and no ambiguity, and to verify a critical
security property. The goal of this property is to demonstrate that \the system
shall successfully authenticate a user before mediating actions initiated by that
user."

3 Observations

The SCR method and tools contributed to the speci�cation and analysis of these
two systems in a number of ways. We describe these ways below:

{ Requirements Capture. Developing a formal requirements speci�cation
from the prose requirements document for CD was di�cult, largely because
the prose document was organized very di�erently than an SCR speci�cation.
Moreover, even though the prose document was high quality, a number of
questions about the required behavior of CD arose. Two SCR tools were use-
ful in correcting and extending our initial SCR speci�cation of CD's required
behavior. First, we used an automatic invariant generator to construct state
invariants from the draft speci�cation. Analyzing these invariants identi�ed
a number of missed requirements and some incorrectly captured require-
ments. After correcting these problems, we used our simulator and a GUI
builder to construct a simulation of CD. Because the CD program manager
was very busy, he did not have the time to review our speci�cation. Instead,
we showed him several scenarios using our CD simulator. By viewing the
simulation, he was able to quickly identify a number of errors in our CD
speci�cation which we subsequently corrected.

{ Formal Veri�cation. To verify the seven security properties listed in Fig-
ure 1, we ran TAME, a user-friendly interface to the theorem prover PVS.
TAME was able to prove four of the seven properties directly. To prove
the remaining properties, TAME needed several supporting invariant lem-
mas. Fortunately, each of the required lemmas belonged to the set of state
invariants that we were able to construct with our invariant generation al-
gorithm [17].

{ Detecting Incorrect Properties. We were unable to prove that the CD
speci�cation satis�es an eighth security property. Although we tried apply-



ing the model checker Spin to the CD speci�cation, Spin repeatedly ran out
of memory due to the large state space of the CD speci�cation and thus was
unable to verify or refute any of the eight security properties. The false prop-
erty was detected by running TAME and studying the problem transitions
returned by TAME. By experimenting with the CD simulator, we were able
to construct a counterexample that ended in one of the problem transitions
and hence demonstrated that the eighth property was false.

{ Correct Formulations of Security. Formulating a correct formal state-
ment of a given security property can be di�cult. In our work on the biomet-
rics standard, the correct formulation of the security property (see above)
required more time than verifying the property.

{ Code Validation. The most important open problem is how to validate the
source code that implements a secure system. While specifying the required
behavior of a secure system and formally proving that the speci�cation sat-
is�es critical security properties can often be accomplished in a reasonable
time, one still needs to demonstrate that the source code operates securely.
One approach to code validation is speci�cation-based testing. That is, one
can derive a set of test cases from the speci�cation and automatically use
these test cases to determine whether the source code satis�es the speci�-
cation. Some initial progress in developing an automatic test case generator
from a requirements speci�cation is reported in [6].

Acknowledgments

Jim Kirby developed both the CD speci�cation and the speci�cation of the
BioAPI standard. Moreover, Jim, Myla Archer, and Ralph Je�ords used TAME
and the invariant generator to verify that the CD speci�cation and the BioAPI
speci�cation satisfy selected security properties. Ramesh Bharadwaj also veri�ed
the properties in Figure 1 using Salsa and constructed a counterexample for the
eighth property of CD using the SCR simulator. I am grateful to Myla Archer
and Jim Kirby for their comments on an earlier draft of this paper.

References

1. M. Archer, C. Heitmeyer, and E. Riccobene. Using TAME to prove invariants
of automata models: Case studies. In Proc. 2000 ACM SIGSOFT Workshop on
Formal Methods in Software Practice (FMSP'00), August 2000.

2. R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for
automatic invariant checking. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS '2000), Berlin, March 2000.

3. BioAPI Consortium. The BioAPI Speci�cation. Version 1.00, March 30, 2000.
4. Steve Easterbrook and John Callahan. Formal methods for veri�cation and val-

idation of partial speci�cations: A case study. Journal of Systems and Software,
1997.

5. S. R. Faulk, L. Finneran, J. Kirby, Jr., S. Shah, and J. Sutton. Experience applying
the CoRE method to the Lockheed C-130J. In Proc. 9th Annual Conf. on Computer
Assurance (COMPASS '94), Gaithersburg, MD, June 1994.



6. A. Gargantini and C. Heitmeyer. Automatic generation of tests from requirements
speci�cations. In Proc. ACM 7th Eur. Software Eng. Conf. and 7th ACM SIG-
SOFT Symp. on the Foundations of Software Eng. (ESEC/FSE99), Toulouse, FR,
September 1999.

7. Constance L. Heitmeyer and John McLean. Abstract requirements speci�cations:
A new approach and its application. IEEE Trans. Softw. Eng., SE-9(5):580{589,
September 1983.

8. Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, and Ramesh Bharadwaj.
SCR*: A toolset for specifying and analyzing software requirements. In Proc.
Computer-Aided Veri�cation, 10th Annual Conf. (CAV'98), Vancouver, Canada,
1998.

9. C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specifying
and analyzing requirements. In Proc. 10th Annual Conf. on Computer Assurance
(COMPASS '95), pages 109{122, Gaithersburg, MD, June 1995.

10. Constance Heitmeyer, James Kirby, Jr., and Bruce Labaw. Tools for formal spec-
i�cation, veri�cation, and validation of requirements. In Proc. 12th Annual Conf.
on Computer Assurance (COMPASS '97), Gaithersburg, MD, June 1997.

11. C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency checking
of requirements speci�cations. ACM Transactions on Software Engineering and
Methodology, 5(3):231{261, April{June 1996.

12. C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction
and model checking to detect safety violations in requirements speci�cations. IEEE
Trans. on Softw. Eng., 24(11), November 1998.

13. Kathryn Heninger, David L. Parnas, John E. Shore, and John W. Kallander. Soft-
ware requirements for the A-7E aircraft. Technical Report 3876, Naval Research
Lab., Wash., DC, 1978.

14. Kathryn L. Heninger. Specifying software requirements for complex systems: New
techniques and their application. IEEE Trans. Softw. Eng., SE-6(1):2{13, January
1980.

15. S. D. Hester, D. L. Parnas, and D. F. Utter. Using documentation as a software
design medium. Bell System Tech. J., 60(8):1941{1977, October 1981.

16. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279{295, May 1997.

17. Ralph Je�ords and Constance Heitmeyer. Automatic generation of state invari-
ants from requirements speci�cations. In Proc. Sixth ACM SIGSOFT Symp. on
Foundations of Software Engineering, November 1998.

18. J. Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A practical approach to building
a high assurance COMSEC system. In Proceedings of the 15th Annual Computer
Security Applications Conference (ACSAC '99). IEEE Computer Society Press,
December 1999.

19. S. Meyers and S. White. Software requirements methodology and tool study for
A6-E technology transfer. Technical report, Grumman Aerospace Corp., Bethpage,
NY, July 1983.

20. Steve Miller. Specifying the mode logic of a ight guidance system in CoRE
and SCR. In Proc. 2nd ACM Workshop on Formal Methods in Software Practice
(FMSP'98), 1998.

21. D. L. Parnas, G.J.K. Asmis, and Jan Madey. Assessment of safety-critical software
in nuclear power plants. Nuclear Safety, 32(2), April{June 1991.




